
2025 State 
of AI Code 
Quality

qodo report



Introduction
AI coding is no longer judged by how 
much code it can generate — it is judged 
by how confident developers are with 
the code generated.

AI tools have become a daily fixture in software development, offering clear 
productivity boosts and even enhancing the enjoyment of the work. Yet, 
despite their widespread use, a deep trust in their output remains elusive. 
Developers aren’t satisfied with code that merely compiles — they want 
intelligent suggestions that are context-aware, adhere to conventions, and 
are backed by tests. Without this, AI-generated code still demands heavy 
human oversight, and that undermines its promise of efficiency.


To close this trust gap, AI must become more than just an autocomplete engine. 
It needs to be embedded deeply within the development lifecycle — as an 
always-on, context-aware reviewer that proactively supports code quality 
and consistency. This is a call for both toolmakers and engineering teams to 
prioritize trust alongside productivity by investing in continuous review, 
automated testing, and integrated context awareness. Only with that 
foundation can AI truly transform software development.

Itamar Friedman
Co-founder & CEO, Qodo

2025 state of AI code quality  qodo.ai @2025 Qodo All rights reserved 2

https://qodo.ai


Executive Summary: In a 2025 survey of 609 
developers across company, sizes and regions, 
three themes emerged.

30%

1 Context is the foundation of trust
65% of developers using AI for refactoring and 
~60% for testing, writing, or reviewing say the 
assistant "misses relevant context."

Among those who feel AI degrades quality, 44% 
blame missing context; yet even among quality 
champions, 53% still want context 
improvements.

The #1 requested fix is "improved contextual 
understanding" (26% of all votes); adding 
"customization to team standards" lifts 
context-first asks to ~30%.

Implication: A learned, repo-wide context engine 
is not a nice-to-have—it is the foundation for 
accuracy, quality, and trust across the SDLC.

65%

60%

Developers using AI for refactoring

Developers using AI for testing, writing, or reviewing say the assistant "misses 
relevant context."

44%

53%

Those who blame missing context

Those who still want context improvements

26%

The #1 requested fix is "improved contextual understanding" (26% of all votes); 
adding "customization to team standards" lifts context-first asks to ~30%.

2 Confidence is the key to adoption
Developers who experience fewer than 20% 
hallucinations are 2.5x more likely to merge 
code without reviewing it (24% vs. 9%).

High-confidence engineers are 1.3x more likely 
to say AI makes their job more enjoyable (46% 
vs. 35%).

The "Confidence Flywheel": 

Accurate, context-rich 
suggestions

Richer context 
feedback

Visible quality 
gains

Rising 
trust

Faster

merges

Implication: Any AI workflow that cannot prove its accuracy will stall adoption long before reaching scale.

Developers with fewer than 20% hallucinations merge code without review (24%), 
compared to 9% of others.

High-confidence engineers say AI makes their job more enjoyable (46%), compared 
to 35% of others.

35%46%

24% 9%

3 Productivity and quality rise together — when review is automated
When teams report "considerable" 
productivity gains, 70% also report better 
code quality — a 3.5x jump over stagnant teams.

With AI review in the loop, quality 
improvements soar to 81% (vs. 55% for equally 
fast teams without review).

Even without a boost in delivery speed, teams 
using AI review see double the quality gains 
(36% vs. 17%).

Implication: Continuous, opinionated review is the 
force-multiplier that converts raw speed into 
durable quality.

Teams using AI review report quality gains (36%), compared to 17% without AI review.

55%

Teams with AI review reporting quality improvements

70%

20%

Teams with productivity gains that also report better code quality

Stagnant teams that report better code quality

17%36%

81%

Teams without AI review but with similar speed reporting quality improvements

2025 state of AI code quality  qodo.ai @2025 Qodo All rights reserved 3

https://qodo.ai


In this report:
Part 1: State of AI coding adoption 5

Part 2: AI Code Quality across the SDLC 8

Part 3: Grounding GenAI Code Quality with Context 12

Part 4: The Confidence Flywheel 16

2025 state of AI code quality  qodo.ai @2025 Qodo All rights reserved 4

https://qodo.ai


Part 1: State of AI coding adoption
AI assistance is no longer a curiosity on the developer desk; it is a mainstream, multi-tool layer woven 
through the entire software lifecycle. What was once experimental is now routine, with developers 
across team sizes and industries integrating AI into core workflows. 


This section highlights how deeply embedded these tools have become, how developers perceive their 
impact, and where the current friction points remain. The data reveals not just adoption, but reliance—
and hints at how AI is reshaping the way code gets written, reviewed, and shipped.

Here are some key 
points we learned:

82% of developers use AI coding tools daily or weekly

59% run three or more tools in parallel

65% say AI touches at least a quarter of their codebase

78% report productivity gains

57% say AI makes their job more enjoyable

Daily Weekly Rarely Never

How frequently do you use AI coding tools in your workflow?

59.8% 21.8% 11.3% 7%

Significantly improved Somewhat improved No impact Somewhat degraded Significantly degraded

Has AI improved or degraded your overall code quality?

24.3% 34.5% 19.8% 10.7% 10.7%

More than 80% 60-80% 40-60% 20-40% Less than 20%

What % of your code is currently generated or significantly influenced by AI tools?

15.1% 9.9% 16.7% 25.3% 33.1

Considerable improvement 10x improvement Slight  improvement No change Decreased improvement

Has AI made you more or less productive?

34.1% 17% 27% 11.2% 10.7%

AI has significantly improved 
my job satisfaction and made 
coding more enjoyable

AI has increased 
my burnout 
at work

AI has relieved some 
pressure and made my job 
more enjoyable

AI has created new 
pressures that 
outweigh its benefits

AI has had a mixed or 
neutral effect on my 
job satisfaction

Which statement best describes how AI has impacted your job satisfaction?

25.2% 32.2% 22.9% 9.2% 10.5%

2025 state of AI code quality  qodo.ai @2025 Qodo All rights reserved 5

https://qodo.ai


Adoption is 
especially strong 
in smaller teams:

51% of active AI users are in companies with 10 or fewer 
developers.

Having said that, 25% of enterprises with 100+ engineers 
are also past the experimentation stage—showing that 
scale isn’t a blocker to meaningful use.

82% of developers use AI 
coding tools daily or weekly

59% use three or more 
AI tools regularly

20% manage five or 
more  AI tools regularly

28% of developers are 
sure of their AI code

82% 59%

20% 28%

Adoption is broad, frequent, and multi-tool
Most developers aren’t just trying AI coding tools—they’re relying on them:

82% say they use an AI coding assistant daily or weekly, a clear sign that these tools have moved 
from experimentation to core workflow.

59% use three or more AI tools regularly, and 20% manage five or more — a signal of both enthusiasm 
and fragmentation in the tool landscape.

Dev teams juggling 6+ tools lack shipping confidence — just 28% are sure of their AI code.

This multi-tool reality reflects how AI is being woven into many parts of the SDLC, from code 
generation to explanation, refactoring, and testing.

2025 state of AI code quality  qodo.ai @2025 Qodo All rights reserved 6

https://qodo.ai


Industry snapshot
Adoption clusters in Tech & Software (56% of respondents) but spreads across Finance (9%) and 
beyond, reflecting sector-agnostic demand for faster, higher-quality development cycles. The 
smallest startups move quickest, but larger organisations are closing the gap as governance patterns 
mature.

AI Is influencing real code, not just prototypes
AI-generated code is making its way into production—not just pull requests:

65% of developers say at least a quarter of 
each commit is generated or shaped by AI.

15% say that more than 80% of their code is 
now AI-influenced.

That means “AI-touched” code is fast approaching parity with traditional development in many teams
— and suggests that GenAI is becoming a silent contributor to production systems.

Developers see gains in both speed and quality
Although there are concerns about accuracy, developers generally report positive outcomes from 
using AI tools:

59% say AI has improved code quality, while 21% report degradation

78% report productivity gains, with 17% claiming a “10x” increase in output

57% say AI makes the job more enjoyable and helps reduce pressure

These responses suggest that AI isn’t just changing how fast developers work—but how they feel about 
their work, too.

Hallucinations are still holding teams back
25% of developers 1 in 5 AI-generated suggestions estimate that  contain factual errors or misleading 
code. 


Widespread adoption hasn’t eliminated one of the biggest blockers to AI reliability: hallucinations. 


For some, these are acceptable nuisances. For others, they’re a hard-stop—especially when working in 
a production environment or secure code bases. 


We’ll uncover in this report, how trust in AI output is directly tied to how accurate, contextual, and 
reviewable AI generated code is.

2025 state of AI code quality  qodo.ai @2025 Qodo All rights reserved 7

https://qodo.ai


Part 2: AI Code Quality 
across the SDLC
As GenAI becomes a regular part of software development, the question is no longer “Can it generate 
code?”— but “Is the code good, and do developers trust it enough to use it?” Speed and volume are 
easy to track, but they don't reflect whether AI is actually improving software or helping teams move 
faster with less friction.

That’s why we focused this part of the report on two essential metrics: code quality and developer 
confidence. Quality reflects the outcome — how clean, accurate, and production-ready the code is. 
Confidence reflects the experience — whether developers trust the AI enough to rely on it during real 
work: merging code, writing tests, or reviewing changes.

Together, these signals tell us whether GenAI is just generating output—or actually driving value.

Velocity ≠ Corner-Cutting: higher productivity goes 
hand-in-hand with higher code quality
A common fear with AI tooling is that faster delivery comes at the cost of quality. Our data shows the 
opposite. When AI meaningfully improves developer productivity, code quality improves right 
alongside it.

Speed and quality rise together
According to our survey:

70% of developers who saw considerable 
productivity gains also reported improved 
code quality

That’s a 3.5x increase over those whose 
productivity stayed the same or declined 
(16–22%)

Even a slight productivity bump led to 
reporting better quality

51% 

Productivity vs Perceived code-quality 
impact of AI

Self-reported productivity change

0

20

40

60

80

100

Sh
ar

e 
re

po
rt

in
g 

im
pr

ov
ed

`

co

de
 b

y 
qu

al
it

y

Decreased productivity No change Slight improvement
Considerable improvement 10x improvement

70%

51%

16%
22%

50%

This shows that AI impact isn’t confined to low-stakes boilerplate. When speed rises, so does trust in the 
code. That’s because quality doesn’t come from speed alone — it comes from how speed is achieved.

Qodo product insight:  Issues of high severity (score 9-10) were 
identified in 17% PRs.

2025 state of AI code quality  qodo.ai @2025 Qodo All rights reserved 8

https://qodo.ai


Continuous review: the catalyst that turns raw 
speed into higher quality
The data from the survey shows a clear pattern: AI-powered code review is where productivity gains 
are converted into real, measurable quality improvements.

Quality gains vs Productivity (review adopters vs non-adopters)

Sh
ar

e 
re

po
rt

in
g 

im
pr

ov
ed

 c
od

e 
qu

al
it

y 
(%

)

Uses AI for code review No AI code review

20

0

Decreased 
productivity

No change Slight 
improvement

Considerable 
improvement

10x improvement

40

60

80

100

17%

36%

60%

69%

81%

19% 17%

50%

34%

55%

Among developers reporting 
considerable productivity gains:

81% use AI for code review of those who  saw quality 
improvements

Just  of fast-moving teams  saw the 
same

55% without AI review

Even when productivity didn’t 
change:

36% of AI-review adopters reported quality gains

That’s double the  seen among non-reviewers in the 
same productivity band

17%

And for teams claiming 
a “10x improvement” in speed:

69% with AI review said quality improved

Compared to just  without review34%

These findings reinforce that continuous review is a missing link between speed and quality. It delivers 
an early win — lifting code quality even before throughput rises — and scales to guardrail the teams 
that push velocity to the limits.

Qodo product insight: When an AI-review tool is enabled, 80% of PRs 
don’t have any human comment or review.

2025 state of AI code quality  qodo.ai @2025 Qodo All rights reserved 9

https://qodo.ai


State of developer confidence in AI coding

The confidence - hallucination divide

Each quadrant represents a different behavioral profile:

Top Left (3.8%)
Low hallucinations, 
high confidence

 The ideal scenario. These developers trust AI and see accurate output. 
But they’re a small minority — just 3.8% fall into this quadrant.

Top Right (11.8%)
Low hallucinations, 
low confidence

 Even when output is accurate, most developers are still cautious. Three 
out of four low-hallucination users don’t fully trust what AI generates.

Bottom Left (8.0%) 
High hallucinations, 
high confidence

These developers use AI despite frequent mistakes—possibly because 
they review everything manually, or apply it only in low-risk areas.

Bottom Right (76.4%) 
High hallucinations, 
low confidence

This is the dominant group. More than three-quarters of developers 
encounter frequent hallucinations and avoid shipping AI-generated 
code without human checks. This quadrant represents a significant 
drag on AI adoption and ROI.

Confidence in tests — do AI-testing adopters trust 
their tests more?
We asked developers how confident they feel in the tests protecting their code — and whether they use 
AI to generate those tests. The survey uncovered that teams that actually let AI write their tests don’t 
just save time — they end up  in those tests.more than twice as confident

To understand how developers perceive the 
reliability of AI-generated code, we mapped 
their responses across two axes:

Hallucination frequency: how often the AI 
produces incorrect or misleading code.

Confidence: how comfortable developers 
are shipping AI code without human review.

Hallucinations vs Shipping-Confidence

H
al

lu
ci

na
ti

on
s 

fr
eq

ue
nc

y

Confidence to ship AI-generated code

3.8%

8.0%

11.8%

76.4%

High 
(Very conf.)

Low

(<20%)

High

(≥20%)

Low 
(Other)

Our survey showed that out of all the developers that don’t use AI for testing, only 27% of them 
are “very” or “somewhat” confident in the safety net their tests provide. 

2025 state of AI code quality  qodo.ai @2025 Qodo All rights reserved 10

https://qodo.ai


However, adoption is still the exception, not the 
rule. This confidence gap — 

 Many teams are held back 
by early experiences with generic, 
disconnected test generation that lacked 
awareness of project context or team 
standards. 


But as AI testing becomes more integrated 
— leveraging real code, referencing existing test 
structures, and aligning with how teams 
already work — developers are more likely to 
trust and adopt it. The shift from isolated test 
scripts to context-rich, in-flow test generation 
is what transforms AI from a shortcut into a 
meaningful quality layer.

a 34-point spread 
between adopters and non-adopters — is a 
missed opportunity.

Confidence in AI generated tests: Users who do 
vs. don't use AI for testing

Sh
ar

e 
‘V

er
y’

 o
r ‘

So
m

ew
ha

t’
 c

on
fi

de
nt

 (%
)

20

0

40

60

80

100

Does NOT use AI 
for testing

Uses AI 
for testing

27%

61%

2025 state of AI code quality  qodo.ai @2025 Qodo All rights reserved 11

Qodo product insight: When user provides test example file when 
generating tests with Qodo Gen, tests adoption jumps by 15% in 
comparison to the cases with no examples.

The confidence gap is huge
76% of developers fall into the "red zone" — frequent hallucinations and low confidence — highlighting a 
major barrier to AI’s value.

These developers are using AI tools, but they don’t trust the results. As a consequence, they:

Manually review or rewrite most suggestions

Delay merges even when AI-generated code looks correct

Avoid deeper integration of AI into their workflows

Lack of trust in AI tools undermines their promised productivity gains — teams recheck, discard, or 
rewrite code and often see limited ROI. This isn’t just a technical issue; it’s an adoption risk. Low 
confidence reduces usage and feedback, creating a vacuum that hinders improvement. Adoption 
tends to be stronger in smaller teams, where trust and iteration move faster.

Why accuracy isn't enough
We found that developers who rarely encounter hallucinations are 
in shipping AI-generated code (24% vs. 9%). But even among the low-hallucination group, most 
developers (75%) will hesitate to merge without manual checks. Why?

2.5x more likely to be very confident 

Because hallucination-free output 
isn’t the full story - developers want 
code that:

Matches project context and architecture

Aligns with style and conventions

Is paired with automated checks and coverage

Without that, even "correct" suggestions feel risky.

https://qodo.ai


Part 3: Context - the foundation of 
trust in AI coding
Developers are starting to use AI across the SDLC, but the most common complaint isn’t hallucination—
it’s relevance. Despite progress in reducing hallucinations, our data shows that AI code suggestions-
rooted in context are the top barrier to AI trust levels and code quality.

65% say AI misses context during refactoring

60% report similar issues during test generation and review

44% of those who say AI degrades quality blame context gaps

Even among AI “champions,” 53% want better contextual understanding

These numbers suggest that contextual intelligence — not just code generation — is now the primary 
driver of perceived quality.

How does AI tooling sprawl factor into context struggles? Dev teams juggling six or more AI tools 
still feel context-blind 38% of the time. 

Where developers want context to work harder
When we asked developers experiencing "context pain" what they most want from their AI tools, one 
answer stood out: richer contextual understanding.

Requested Improvements among Context-Struggling Developers

Improved  contextual understanding

Reduced hallucinations/factual errors

Better code quality

Better handling of complex codebases

Better integration with different tools

Improved security awareness 

More customization to team coding standarts

Better explanation of generated code

Share of improvement votes (%)

50 10 15 20 25

26% 26%

24%

15%

14%

4%

3%

6%

7%

26% of all top-three improvement votes focused on “improved contextual understanding”

This narrowly edged out the next most common request: “reduced hallucinations” (24%)

Another  asked for “customization to team coding standards,” which is often rooted in 
contextual mismatches—not just style enforcement

4%

2025 state of AI code quality  qodo.ai @2025 Qodo All rights reserved 12

https://qodo.ai


Taken together, nearly  were about making AI tools more 
 — well ahead of requests for better quality output 

(15%) or improved handling of complex systems (14%).


These responses point to a deeper insight: 

When AI suggestions ignore team patterns, architecture, or naming conventions, developers end up 
rewriting or rejecting the code — even if it’s technically “correct.” Fixing this doesn’t just reduce errors; 
it unlocks faster code merges, higher trust in AI, and smoother developer collaboration.

one-third of all improvement requests aware 
of the codebase, team norms, and project structure

hallucinations and quality issues often stem from the same 
issue—poor contextual awareness.


Who feels context pain the most?

By company size: 50% of developers who say AI misses relevant context work 
at startups with 10 or fewer employees

While large orgs face complexity at scale, smaller teams 
feel context gaps more acutely—likely because every 
mistake costs more time when resources are limited

By developer 
seniority:

Context pain increases with experience: from 41% among 
junior developers to 52% among seniors. Senior engineers 
have deeper mental models of their codebase, and they 
expect AI to reflect that nuance

While seniors see the largest quality gains from AI (60%), 
they also report the lowest confidence in shipping AI-
generated code (22%)

Manual context is broken, persistent learning 
is the fix
Manually selecting context for every prompt — files, functions, folders — might have worked in early 
tools, but it doesn’t scale. It’s tedious, error-prone, and leads to frustration when results still miss the 
mark.

54% of developers who manually select context say the AI still misses relevance

That frustration drops to  when tools choose context autonomously33%

And falls even further — to  — when context is  and reused across sessions16% persistently stored

2025 state of AI code quality  qodo.ai @2025 Qodo All rights reserved 13

https://qodo.ai


2025 state of AI code quality  qodo.ai @2025 Qodo All rights reserved 14

Context-Miss strugle vs Context-Selection method
%

 w
ho

 st
ru

gg
le

 w
it

h 
m

is
se

d

Let the agent choose 
autonomously

0

50

100

Instruct the agent 
via prompts

Manually select 
context occasionally

Manually select 
context every time

Set context as part 
of the chat template

33%
40%

16% 16%

54%

In short: 

The shift isn’t just about convenience — it’s about enabling AI to behave like a teammate who knows 
your codebase, not a temporary helper who needs constant reminders. Tools that index the full repo, 
learn team conventions, and remember architectural patterns can deliver suggestions that feel native 
to the project — and immediately relevant.

the more context is automated and retained, the more useful and trustworthy AI becomes.


Qodo product insight: Agentic chat utilizes an average of 2.5 MCP tools 
per user message. The majority of tool usage (60%) is dedicated to 
context identification and content retrieval operations (RAG).

LLM context gaps lurk in every task and they shape 
how developers judge quality
Context gaps aren't limited to edge cases—they emerge in the most common and critical development 
tasks. Developers are consistently reporting that GenAI tools fail to grasp enough of the codebase to 
be reliable:

65% refactoring say AI misses context during 

64% boilerplate generation during 

60% core tasks during  like writing or testing

~58% code reviews and explanations during 

Structural tasks suffer most: Refactoring tops the chart for AI missing context.

https://qodo.ai


In other words: 
 These aren’t fringe issues—they strike where developers expect the most value.

the more a task depends on understanding the broader codebase, the more likely AI is 
to miss the mark.

This shows that context is the floor and the 
ceiling: without it, quality drops; with it, 
expectations (and scrutiny) rise. A persistent, 
code-indexing engine is the only path to 
eliminating those blind spots and unlocking 
quality gains across every task.

Missing context doesn’t just lead to bad 
suggestions—it distorts how developers assess AI 
performance overall:

Among those who say AI degraded quality, 
44% blame missing context

Even among those who say AI 
quality, 

improved 
53% still want better context

Style mismatches are more than an annoyance—
they break trust
When AI-generated code doesn't match a team's coding conventions, trust and productivity suffer. To 
understand how this affects developer satisfaction, we examined responses across consistency tiers—
how often AI suggestions align with team coding style and standards.

The real insight 
emerges when we 
flip the lens:

Developers who receive inconsistent output are 1.5x more 
likely to flag “code not in line with team standards” as a 
top frustration

Nearly two out of five developers who rarely or only 
occasionally see style-aligned suggestions cite this as a 
major blocker

For these developers, every AI assist becomes a fix-it task—slowing momentum, breaking flow, and 
eroding confidence.

Context pain vs Perceived code quality

%
 w

ho
 sa

y 
A

I m
is

se
s 

co
nt

ex
t

Degraded

0

20

40

60

80

100

No impact Improved

44%

53%

20%

Qodo product insight: 8% of code review suggestions focus on 
aligning pull requests with established company best practices.

2025 state of AI code quality  qodo.ai @2025 Qodo All rights reserved 15

https://qodo.ai


Part 4: The Confidence Flywheel

Context-rich suggestions 
reduce hallucinations

Accurate code 
passes quality checks

Developers trust what 
they see and ship faster

Every merge feeds the model 
better examples

The loop reinforces 
itself over time

Our survey reveals 
a self-reinforcing 
cycle we call 
the “Confidence 
Flywheel”

It starts with grounded suggestions: when an AI assistant pulls precisely the right code context — local 
files, architectural patterns, team conventions — the rate of hallucinations plummets.


Fewer errors translate into visible quality gains as developers see cleaner diffs, higher test coverage, 
and far fewer nit-pick reviews. Those tangible wins build personal trust, so teams begin shipping AI-
generated code faster and with less hesitation. Each merged pull request then feeds richer examples 
back into the model, sharpening its contextual acuity and reinforcing the entire loop.

Most teams haven’t entered the flywheel-yet

Only a small share of developers (just 3.8%) report experiencing both low hallucinations and high 
confidence in shipping AI-generated code. These are the teams truly benefiting from AI in production. 
They trust the suggestions, ship faster, and close the loop with high-quality feedback.


Among this low-hallucination group, those who also feel confident (17%) report:

1.3x higher likelihood of seeing code quality gains (44% vs. 35%)

2.5x greater confidence in shipping AI code (24% vs. 9%)

This is the group we think of as the "sweet spot" — and within it, 

This suggests  When developers see both 
fewer errors and higher - quality output, they’re much more likely to trust the AI and use it in 
production.


We also see that low hallucinations make developers  to say AI has improved code 
quality (44% vs. 35% overall). Still, most developers — even those with accurate output — remain hesitant. 
That’s where  can close the gap.

over half (53%)

1.3x more likely

automated quality checks

 report clear 
improvements in code quality.


a strong link between accuracy, quality, and confidence.

Confidence feels good: how trusting AI-generated 
code builds happier engineers
We asked developers how AI affects their job satisfaction—and found that confidence in the quality of 
the code matters just as much as the code itself.

2025 state of AI code quality  qodo.ai @2025 Qodo All rights reserved 16

https://qodo.ai


Among developers who feel confident in AI-
generated code, 46% say it makes their job 
more enjoyable.

That drops to 35% among those who don’t 
trust the output.

That 11-point gap isn’t about raw velocity; it’s 
about peace of mind. Confident teams spend 
less time second-guessing bots, chasing flaky 
tests, or re-writing low-quality diffs, freeing 
them to focus on creative problem-solving—the 
work that sparks joy and fuels retention.

Job-Satisfaction gain vs Confidence in AI code
Sh

ar
e 

w
it

h 
po

si
ti

ve
 jo

b 
sa

ti
sf

ac
ti

on
 (%

)

High confidence Low confidence

46%
35%

0

20

40

60

80

100

Productivity powers happiness 
— confidence locks it in
Developer satisfaction rises sharply when AI boosts productivity. 
But even when productivity gains stall, confidence in the code still 
doubles the likelihood of a positive morale outcome.

The dual engines of satisfaction

Our data shows two key 
drivers of job satisfaction:

1 Productivity gains from AI

2 Confidence in AI-generated code

Developers who experience both — faster output 
and trust in results — report the highest rates of 
job satisfaction (61%). But even when only 
productivity improves, satisfaction remains high 
(58%), showing that speed alone carries weight.


However, when productivity doesn’t improve, 
confidence becomes the swing factor.

Positive job satisfaction (%) 
by confidence & productivity

25%

61%

14%

58%

High confidence

No improvement

Productivity

Low Confidence

Among developers who didn’t 
see productivity gains:

25% of those with high confidence still 
reported positive satisfaction

Only 14% of low-confidence developers felt 
the same

That’s nearly a , proving that trust in AI output can still move the needle on morale—even 
when performance stalls.

2x difference

2025 state of AI code quality  qodo.ai @2025 Qodo All rights reserved 17

https://qodo.ai


About Qodo
Qodo is an agentic code quality platform for reviewing, testing, and writing code, integrating AI 
across development workflows to strengthen code quality at every stage. Our AI agents are powered 
by a core platform that provides deep context awareness, enabling AI to understand the specific best 
practices of a codebase and solve complex coding challenges more effectively.

AI across the SDLC
Qodo supports the full SDLC with code reviews, test generation and 
coverage, agentic coding to deliver eliminate the speed vs. quality tradeoff.

Codebase intelligence engine 
Continuously feed Qodo agents with your organization’s best practices and 
context. Qodo’s codebase intelligence engine semantically understands 
your entire codebase—it’s structure, dependencies, and logic.

Multi-agent code integrity 
Generate full-stack code, fix bugs, build UI components, and implement 
tasks from tickets. Automate full review workflows to surfacing issues, get 
suggestions, ensure compliance, and identifying missing tests. 

Enterprise governance and control
Qodo provides  smart guardrails that govern agent behavior, enforce rules, 
and ensure development workflows  operate within a trusted set of tools. 

Leverage top tier models

Integrating with

Self-hosted, airgapped, 
VPC, Cloud

A system built to solve complex code with AI
With Qodo, AI doesn’t run wild in your code.  Our suite of AI agents are guided by quality-focused 
workflows, underpinned by a platform for context-awareness and codebase intelligence.

Codebase intelligence  engine:  Continuous codebase indexing, analysis and embedding for AI contextual awareness.

Qodo Gen IDE-Agent

Agentic code generation and development

Autonomous coding agent with iterative workflows

Extensible tooling via Model Context Protocol (MCP)

Enterprise governance and control settings

Qodo Merge Git-Agent

AI-powered code review agent

15 automated PR  review workflows

Intelligent code suggestions and issue detection

Customizable review workflows and best practices

Plan Write Test Review

2025 state of AI code quality  qodo.ai @2025 Qodo All rights reserved 18

https://qodo.ai

