
The New Code Review Culture:  
9 Rules for High-Speed, High-Quality 
Engineering

1 Preserve strong ownership 
over everything that ships

No matter who generated the code, a 
human remains accountable for 
correctness, reliability and long‑term 
maintainability. AI can suggest code, but 
only engineers can take responsibility for 
what reaches production.

Best practice:

Treat AI as an assistant, not an 
author. 

Hold AI-generated changes to the 
same review bar as handwritten 
code, including tests, edge cases, 
and failure modes.

2 Limit PR size for fast, reliable 
reviews

AI can create large batches of code, but 
human attention does not scale linearly. 
Very large PRs show diminishing returns 
in review time and effectiveness 
compared to smaller changes.

Best practice:

Break work into small, coherent PRs 
that each do one clear thing, 
end‑to‑end.

Avoid “AI dumps” of large, mixed-
purpose changes that slow review, 
hide defects, and increase 
time‑to‑merge.

3 Review the quality of 
decisions, not just the code

As AI becomes part of the creation 
process, code review increasingly 
evaluates how well the contributor 
directed and curated AI output.

Best practice:

Look for thoughtful structuring, clear 
intent, and selective acceptance of 
AI suggestions.

Encourage reviewers to assess both 
the change and the underlying 
reasoning.

4 Review changes  
with full context, not just  
the diff

AI-generated changes can appear 
correct in isolation while conflicting with 
broader system behavior or intent. 
High‑quality review for brownfield 
changes should validate the preservation 
of intended behavior and should fit 
cleanly into existing system boundaries.

Best practice:

Review changes in the context of the 
repository, upstream/downstream 
dependencies, and real execution 
paths, not just the local diff.

Confirm that the change aligns with 
documented intent, non‑functional 
requirements, and any 
domain‑specific constraints or 
assumptions.

5 Adopt team-specific 
workflows and generation 
patterns

Different domains, stacks, and problem 
types require different prompting styles 
and development rituals. Effective teams 
standardize domain‑aware prompting, 
test strategies, and review checklists for 
each area of the codebase.

Best practice:

Document generation and review 
patterns that work well for each 
domain (e.g., migrations, APIs, infra, 
etc).

Maintain local guidelines or 
templates—prompt snippets, test 
expectations, and review questions
—that reflect each domain’s risks 
and nuances.

6 Use layered governance: 
global standards, domain 
rules, team rules

Quality at scale depends on clear 
guardrails, not ad hoc judgment. Clear 
standards reduce cognitive load on 
reviewers and make quality less 
dependent on individual heroics.

Best practice:

Define non-negotiable org‑wide rules 
(e.g., testing requirements, security 
constraints, review coverage) that 
apply to all code, AI‑generated or not.

Add domain-level patterns where 
needed.

Allow teams to maintain their own 
working conventions within these 
boundaries, so governance supports 
speed instead of fighting it.

7 Split greenfield and 
brownfield AI workflows

Greenfield and brownfield work demand 
different AI strategies and review 
checklists. Exploration is cheap in new 
code, but established systems benefit 
more from mechanical, tightly‑scoped, 
test‑driven changes.

Best practice:

In greenfield areas: leverage AI for 
rapid iteration and exploration.

In brownfield areas: use structured, 
mechanical, test-driven 
transformations for safety and 
consistency.

8 Prevent code quality drift as 
models change

Model versions, prompts, and tools 
evolve, and small shifts can quietly erode 
quality if review workflows stay static. 
Teams that periodically re‑audit 
AI‑generated changes and patterns catch 
regressions earlier and maintain trust in 
automation.

Best practice:

Regularly sample and re‑review 
AI‑generated code, migrations, and 
common patterns to verify they still 
meet standards as tools evolve.

Use AI-assisted review to flag risky 
patterns, unexpected diff shapes, or 
deviations from house style before 
they reach human reviewers.

9 Make excellence visible

Code review culture is built more by what 
gets celebrated than by what gets 
mandated.

Best practice:

Publicly recognize review behaviors 
that prevented incidents, improved 
reliability, or clarified architecture, 
not just “fast approvals.”

Share effective rules, checklists, and 
workflows across teams

Use visible quality signals to spark 
healthy standards‑raising 
competition.


