The New Code Review Culture: & dodo
9 Rules for High-Speed, High-Quality

Engineering

Preserve strong ownership
over everything that ships

No matter who generated the code, a
human remains accountable for
correctness, reliability and long-term
maintainability. Al can suggest code, but
only engineers can take responsibility for
what reaches production.

Best practice:

Treat Al as an assistant, not an
author.

® Hold Al-generated changes to the
same review bar as handwritten
code, including tests, edge cases,
and failure modes.

Review changes
with full context, not just
the diff

Al-generated changes can appear
correct in isolation while conflicting with
broader system behavior or intent.
High-quality review for brownfield
changes should validate the preservation
of intended behavior and should fit
cleanly into existing system boundaries.

Best practice:

® Review changes in the context of the
repository, upstream/downstream
dependencies, and real execution
paths, not just the local diff.

® Confirm that the change aligns with
documented intent, non-functional
requirements, and any
domain-specific constraints or
assumptions.

Split greenfield and
brownfield Al workflows

Greenfield and brownfield work demand
different Al strategies and review
checklists. Exploration is cheap in new
code, but established systems benefit
more from mechanical, tightly-scoped,
test-driven changes.

Best practice:

® In greenfield areas: leverage Al for
rapid iteration and exploration.

® In brownfield areas: use structured,
mechanical, test-driven
transformations for safety and
consistency.

Limit PR size for fast, reliable
reviews

Al can create large batches of code, but
human attention does not scale linearly.
Very large PRs show diminishing returns
in review time and effectiveness
compared to smaller changes.

Best practice:

® Break work into small, coherent PRs
that each do one clear thing,
end-to-end.

® Avoid “Al dumps” of large, mixed-
purpose changes that slow review,
hide defects, and increase
time-to-merge.

Adopt team-specific
workflows and generation
patterns

Different domains, stacks, and problem
types require different prompting styles
and development rituals. Effective teams
standardize domain-aware prompting,
test strategies, and review checklists for
each area of the codebase.

Best practice:

® Document generation and review
patterns that work well for each
domain (e.g., migrations, APIs, infra,
etc).

® Maintain local guidelines or
templates—prompt snippets, test
expectations, and review questions
—that reflect each domain’s risks
and nuances.

Prevent code quality drift as
models change

Model versions, prompts, and tools
evolve, and small shifts can quietly erode
quality if review workflows stay static.
Teams that periodically re-audit
Al-generated changes and patterns catch
regressions earlier and maintain trust in
automation.

Best practice:

® Regularly sample and re-review
Al-generated code, migrations, and
common patterns to verify they still
meet standards as tools evolve.

® Use Al-assisted review to flag risky
patterns, unexpected diff shapes, or
deviations from house style before
they reach human reviewers.

Review the quality of
decisions, not just the code

As Al becomes part of the creation
process, code review increasingly
evaluates how well the contributor
directed and curated Al output.

Best practice:

® Look for thoughtful structuring, clear
intent, and selective acceptance of
Al suggestions.

® Encourage reviewers to assess both
the change and the underlying
reasoning.

Use layered governance:
global standards, domain
rules, team rules

Quality at scale depends on clear
guardrails, not ad hoc judgment. Clear
standards reduce cognitive load on
reviewers and make quality less
dependent on individual heroics.

Best practice:

® Define non-negotiable org-wide rules
(e.g., testing requirements, security
constraints, review coverage) that
apply to all code, Al-generated or not.

® Add domain-level patterns where
needed.

® Allow teams to maintain their own
working conventions within these
boundaries, so governance supports
speed instead of fighting it.

. Make excellence visible

Code review culture is built more by what
gets celebrated than by what gets
mandated.

Best practice:

® Publicly recognize review behaviors
that prevented incidents, improved
reliability, or clarified architecture,
not just “fast approvals.”

® Share effective rules, checklists, and
workflows across teams

® Use visible quality signals to spark
healthy standards-raising
competition.



